High-Resolution Imaging of the Retinal Nerve Fiber Layer in Normal Eyes Using Adaptive Optics Scanning Laser Ophthalmoscopy

نویسندگان

  • Kohei Takayama
  • Sotaro Ooto
  • Masanori Hangai
  • Naoko Arakawa
  • Susumu Oshima
  • Naohisa Shibata
  • Masaaki Hanebuchi
  • Takashi Inoue
  • Nagahisa Yoshimura
چکیده

PURPOSE To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL) in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO). METHODS AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. RESULTS AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001). RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001) CONCLUSIONS AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging Glaucomatous Damage Across the Temporal Raphe.

PURPOSE To image and analyze anatomical differences at the temporal raphe between normal and glaucomatous eyes using adaptive optics scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography (OCT), and to relate these differences to visual field measurements. METHODS Nine glaucomatous eyes of 9 patients (age 54-78 years, mean deviation of visual field [MD] -5.03 to -0.20 dB) and ...

متن کامل

Adaptive optics scanning laser ophthalmoscopy.

We present the first scanning laser ophthalmoscope that uses adaptive optics to measure and correct the high order aberrations of the human eye. Adaptive optics increases both lateral and axial resolution, permitting axial sectioning of retinal tissue in vivo. The instrument is used to visualize photoreceptors, nerve fibers and flow of white blood cells in retinal capillaries.

متن کامل

In vivo imaging and quantitative evaluation of the rat retinal nerve fiber layer using scanning laser ophthalmoscopy.

PURPOSE To determine whether scanning laser ophthalmoscopy (SLO) is useful for in vivo imaging and quantitative evaluation of rat retinal nerve fiber layer (RNFL) using an optic nerve crush model. METHODS The optic nerve of the right eye was crushed intraorbitally with a clip. The left eye served as the untreated control. Fundus images of both eyes were recorded by SLO using an argon blue las...

متن کامل

Imaging of Retinal Vascular Layers: Adaptive Optics Scanning Laser Ophthalmoscopy Versus Optical Coherence Tomography Angiography

PURPOSE Retinal vascular networks are observed as a layered structure residing in a nerve fiber layer and an inner nuclear layer of the retina. This study aimed to evaluate reflectance confocal adaptive optics scanning laser ophthalmoscopy (AO-SLO) for imaging of the layered retinal vascular networks. METHODS This study included 16 eyes of 16 healthy cases. On the fovea, 2.8- and 3.0 mm2-area...

متن کامل

Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

PURPOSE To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. METHODS Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012